322714(22)

B. E. (Seventh Semester) Examination, April-May 2020

(Old Scheme)

(Computer Science Engg. Branch)

OPERATIONS RESEARCH

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) part of each questions.

1. (a) What is objective functions?

2

(b) Solve by Simplex method:

7

Maximize

$$Z = 3x_1 + 4x_2$$

Subject to

$$x_1 + x_2 \le 450$$

$$2x_1 + x_2 \le 600$$

$$x_1, x_2 \ge 0$$

- (c) Find the maximum value of $Z = 5x_1 + 3x_2$ Subject to constraints $3x_1 + 5x_2 \le 15$, $5x_1 + 2x_2 \le 10$, $x_1x_2 \ge 0$ using Graphical method. 7
- (d) Solve using Big M method Max

$$Z = 2x_1 + 5x_2$$

Subject to

$$x_1 + 4x_2 \le 24$$
 $3x_1 + x_2 \le 21$
 $x_1 + x_2 \le 9$
 $x_1x_2 \ge 0$

2. (a) Write down the steps for least cost method.

(b) Solve the following Transportation problem using:

(ii) Vogal's Approximation Rule

THE PERSON NAMED IN	İ	2	3	4	Supply
A	11	13	17	14	250
В	16	18	14	10	300
C	21"	24	13	10	400
Demand	200	225	275	250	

(c) Solve the following transportation problem using Vogel's Approximation method then find optimal solution using MODI method.

and trade and hop an amount of trade a firm of the last

Y.	A	В	_	D	ed my limit for
			50		7
I say a military	70	30	40	60	9
Trillians statem	40	8	70	20	18
	5	8	7	14	
	,ł		41:1	12.1	فالسهامية فيستج

(d) Solve the Assignment problem:

ranguight

	10	2	(3 ₁	4
1	15	13	.14	:17
2	11	12	1,5	13
3	13	12	10	11
4	15	17	114	⁰ 16

PTO

3

322714(22)

- **3.** (a) What are the Different Types of Inventory cost?
 - (b) A stockist has to supply 12,000 units of a product/ yr. Demand is fixed, shortage cost is infinite. Holding cost = R 0.20/unit/month, ordering cost/order is R 350. Find optimum lot size, optimum sheduling period and min total variable yearly cost.
 - (c) Demand of a book is 9000 units/yr., cost of one procurement is R 100. Hosting cost/unit is 2.40/ year replacement is instantaneous and no shortage determine.
 - (i) economic lot size
 - (ii) no. of order/year
 - (iii) The time between orders
 - (iv) Total cost/year if cost of one unit is Rs. 1.
 - (d) Calculate EOQ in units and total variable cost for following items, assuming as ordering cost of Rs. 5 and a holding cost of 10 year.

	0	
Item	Annual Demand	Unit Price
A	800 unit	Rs. 0.02
В	400 unit	Rs. 1.00
C	392 unit	Rs. 8.00
D	13,800 unit	Rs. 0.20
	322714(22)	

4. (a) Explain Transient and steady state of a system?

(b) 8 jobs are to be processed on a single machine.

The processing time and due date is given. Using
Earliest Due Date (EDD). Find:

(i) Optimal sequence

- (ii) Completion time
- (iii) Mean flow rate
- (iv) Avg. in process Inventory
- (v) Lateness, mean lateness, max lateness

Job: 1 2 3 4 5 6 7 8

 T_i : 5 8 6 3 10 14 7 3

 D_i : 15 10 15 25 20 40 45 50

(c) Find sequence and total elapsed time that required to complete the following tasks on two machines:

Task : A B C D E F G H I

Machine-I: 2 5 4 9 6 8 7 5 4

Machine-II: 6 8 7 4 3 9 3 8 11

(d) Find the sequence of three machines and total elapsed time that required to complete the following tasks and also find out idle time of each machine.

322714(22)

PTO

	-	7
	6.	
1	1.7	

Job	Time for	Time for	Time for
300	turning (min)	threading (min)	Knorling (min)
1	Carant of grown much	8	u. — 13 III
2	12 mg u	1	
3		DMCD14 = 4	9
4	2	_ 6	12
5	9	2	8
6	11	1	13

5.	(a)	Explain	looping	in	a	network.
----	-----	---------	---------	----	---	----------

7

(b) Find critical path for following schedule:

(c)	A project	has	following	schedule	time	:
ICI	A DIOICCL	IIus	10110	e e	1	

c) A project has following schedule time:		
Job	Duration	
1-2 miles	with the 15 morphow will lost	
mirrollo ed 113 curron	of heatings millionaries and	

	[7]
2-3	3
. 2-5	5
3-4	8
3-6	12
4-5	1
4-6	14
5-6	3

(i) Draw an arrow diagram representing the project.

14

(ii) Find total float for each activity.

6-7

- (iii) Find critical path and total project duration.
- (d) Given a network. Determine variance and expected time for each network when $t_o,\,t_m\,\&\,t_p\,$ are given in sequence for each activity.

322714(22)